VCE Maths Methods Integral Calculus Mini Test 6

Number of marks: 10

Reading time: 2 minutes

Writing time: 15 minutes

Section A Calculator Allowed
Instructions
• Answer all questions in pencil on your Multiple-Choice Answer Sheet.
• Choose the response that is correct for the question.
• A correct answer scores 1; an incorrect answer scores 0.
• Marks will not be deducted for incorrect answers.
• No marks will be given if more than one answer is completed for any question.
• Unless otherwise indicated, the diagrams in this book are not drawn to scale.


Question 1 [2019 Exam 2 Section A Q4]

\(\int_0^{\frac{\pi}{3}} (a\sin(x) + b\cos(x))dx\) is equal to

  • A. \(\frac{(2-\sqrt{3})a-b}{2}\)

  • B. \(\frac{b-(2-\sqrt{3})a}{2}\)

  • C. \(\frac{(2-\sqrt{3})a+b}{2}\)

  • D. \(\frac{(2-\sqrt{3})b-a}{2}\)

  • E. \(\frac{(2-\sqrt{3})b+a}{2}\)
Correct Answer: C
Click here for full solution
Question 2 [2019 Exam 2 Section A Q5]

Let \(f'(x) = 3x^2 - 2x\) such that \(f(4) = 0\).
The rule of \(f\) is

  • A. \(f(x) = x^3 - x^2\)
  • B. \(f(x) = x^3 - x^2 + 48\)
  • C. \(f(x) = x^3 - x^2 - 48\)
  • D. \(f(x) = 6x - 2\)
  • E. \(f(x) = 6x - 24\)
Correct Answer: C
Click here for full solution
Question 3 [2018 Exam 2 Section A Q19]

The graphs \(f: R \to R, f(x) = \cos\left(\frac{\pi x}{2}\right)\) and \(g: R \to R, g(x) = \sin(\pi x)\) are shown in the diagram below.

Graphs of f(x) and g(x) showing shaded regions between them.

An integral expression that gives the total area of the shaded regions is

  • A. \(\int_0^3 \left(\sin(\pi x) - \cos\left(\frac{\pi x}{2}\right)\right)dx\)
  • B. \(2\int_\frac{5}{3}^{3} \left(\sin(\pi x) - \cos\left(\frac{\pi x}{2}\right)\right)dx\)
  • C. \(\int_0^\frac{1}{3} \left(\cos\left(\frac{\pi x}{2}\right) - \sin(\pi x)\right)dx - 2\int_\frac{1}{3}^1 \left(\cos\left(\frac{\pi x}{2}\right) - \sin(\pi x)\right)dx - \int_\frac{5}{3}^3 \left(\cos\left(\frac{\pi x}{2}\right) - \sin(\pi x)\right)dx\)
  • D. \(2\int_0^\frac{5}{3} \left(\cos\left(\frac{\pi x}{2}\right) - \sin(\pi x)\right)dx - 2\int_\frac{5}{3}^{3} \left(\cos\left(\frac{\pi x}{2}\right) - \sin(\pi x)\right)dx\)
  • E. \(\int_0^\frac{1}{3} \left(\cos\left(\frac{\pi x}{2}\right) - \sin(\pi x)\right)dx + 2\int_\frac{1}{3}^1 \left(\sin(\pi x) - \cos\left(\frac{\pi x}{2}\right)\right)dx + \int_\frac{5}{3}^1 \left(\cos\left(\frac{\pi x}{2}\right) - \sin(\pi x)\right)dx\)
Correct Answer: C
Click here for full solution

End of Section A


Section B – No Calculator
Instructions
• Answer all questions in the spaces provided.
• Write your responses in English.
• In questions where a numerical answer is required, an exact value must be given unless otherwise specified.
• In questions where more than one mark is available, appropriate working must be shown.
• Unless otherwise indicated, the diagrams in this book are not drawn to scale.


Question 1 [2021 Exam 1 Q2]

Let \( f'(x) = x^3 + x \).
Find \( f(x) \) given that \( f(1) = 2 \). 2 marks

Question 2 [2022 Exam 1 Q8]

Part of the graph of \(y = f(x)\) is shown below. The rule \(A(k) = k \sin(k)\) gives the area bounded by the graph of \(f\), the horizontal axis and the line \(x = k\).

Graph of f(x) showing the area A(k) under the curve from 0 to k.

a. State the value of \( A\left(\frac{\pi}{3}\right) \). 1 mark

b. Evaluate \( f\left(\frac{\pi}{3}\right) \). 2 marks

c. Consider the average value of the function \(f\) over the interval \(x \in [0, k]\), where \(k \in [0, 2]\). Find the value of \(k\) that results in the maximum average value. 2 marks


End of examination questions

VCE is a registered trademark of the VCAA. The VCAA does not endorse or make any warranties regarding this study resource. Past VCE exams and related content can be accessed directly at www.vcaa.vic.edu.au

>