21 Free Cheatsheets! vear 12 MATHS METHODS free Overview vi.9s

FREE LESSONS AT: MathsMethods.com.au

You can download this book for free, get video lessons, exam questions and much more! All for free! Just sign up with your email.

Purpose of this book

Hello!

This is a brief overview of Units 3 \& 4 Mathematical Methods to help you learn and revise more efficiently.
It was originally designed as a reference book for students who use the online video tutorials on
MathsMethods.com.au but has since been used by many as their Bound Reference. Each page has a clickable link to direct you to the relevant video tutorial if you have access and there's plenty of other free resources if you don't!

Please note, like many of our resources, this overview is designed to reinforce understanding and may not use the exact notation you need to use when doing tests and exams.

Do well and I hope this overview makes the year a little less stressful for you :)

Kind regards
Wher
Alexander Bell | Author \& Founder of MathsMethods.com.au

Contents

Click a page number to instantly move to that topic

1. Purpose of the Book (Read First!) page 2
2. Contents page 3 to 8
3. TOPIC 1: Functions and Relations page 9
4. Linear Equations page 10
5. How to draw Parabolas page 11
6. List of Main Functions page 12
7. How to Sketch Any Function page 13
8. Transformations page 14
9. Matrix Transformations page 15
10. Domain and Range. page 16
11. Reading Any Function page 17
12. Sketching Functions in Intercept Form page 18
13. Types of Functions - One to One and One to Many page 19
14. Types of Functions - Odd, Even and Hybrid page 20

Contents

15. Sum and Product of Functions page 21
16. Inverse Functions page 22
17. Composite Functions $\mathbf{f}(\mathbf{g}(\mathbf{x}))$ page 23
18. Factorising Polynomials page 24
19. Sketching Fraction Power Functions page 25
20. Strictly Increasing page 26
21. TOPIC 2: Algebra (Sin, Cos \& Tan and Logs and Exponentials). page 27
22. Exponential Laws page 28
23. Understanding Logarithms page 29
24. Log Laws page 30
25. Sketching Logs and Exponentials page 31
26. Inverse Functions: Logs and Exponentials page 32
27. Sin, Cos and Tan Definitions page 33
28. Radians page 34

Contents

29. Exact Values page 35
30. Exact Values - for larger numbers page 36
31. Finding Angles (θ) page 37
32. General Solutions for $\mathrm{Sin}, \mathrm{Cos}$ and Tan page 38
33. Understanding Sin, Cos \& Tan Graphs. page 39
34. Sketching Sin, Cos \& Tan Graphs page 40
35. Sketching a Tough Cosine Graph page 41
36. TOPIC 3: Calculus page 42
37. What is Calculus? page 43
38. The First Principle of Calculus page 44
39. How to Sketch $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ (The Derivative) page 45
40. Finding $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ (The Derivative) page 46
41. Derivatives and Differentiating Definitions page 47
42. Understanding $\boldsymbol{d y} / \boldsymbol{d} \boldsymbol{x}$ page 48

Contents

38. The Chain Rule page 49
39. The Chain Rule Formula List. page 50
40. The Product Rule and The Quotient Rule page 51
41. Continuous and Differentiable page 52
42. Finding the Equation of the Tangent Line page 53
43. Stationary Points page 54
44. Sketching using Stationary Points page 55
45. Rate of Change. page 56
46. Antidifferentiation page 57
47. How to Antidiff. page 58
48. Why $+c$? page 59
49. Tougher Antidiffs. page 60
50. Approximate Area Under a Graph page 61
51. Integration - Exact Area page 62

Contents

Click a page number to instantly move to that topic

52. Area Between Two Functions and Average Value page 63
53. Kinematics - Displacement, Velocity and Acceleration page 64
54. TOPIC 4: Probability and Statistics page 65
55. Basics of Probability page 66
56. Conditional and Independent Probability page 67
57. Discrete Random Variables page 68
58. Measures of Centre page 69
59. Measures of Spread page 70
60. Binomial Random Variables page 71
61. Binomial Measure of Spread and Centre page 72
62. Continuous Random Variables page 73
63. Continuous Random Variables - Limits and Conditional page 74
64. Continuous Random Variables - Measures of Centre page 75
65. Continuous Random Variables - Measures of Spread page 76

Contents

Click a page number to instantly move to that topic

66. Normal Distribution - Basics page 77
67. Normal Distribution - Examples page 78
68. Normal Distribution - Using the Calculator page 79
69. The Basics of Statistics page 80
70. Sampling Distributions page 81
71. Large Populations. page 82
72. Binomial and Normal Approximations page 83
73. Confidence Intervals page 84
74. Margin of Error. page 85
75. Final Thoughts \& Extra Resources! page 86
76. Distribution Information and Disclaimer page 87

Covered in detail in video tutorials, see LINEAR EQUATIONS
Gradient-Intercept Form
$y=m x+c$
m means gradient c means y-intercept

Intercept Form $a x+b y=c$

To find x -intercept, make $\mathbf{y}=0$
To find y -intercept, make $\mathrm{x}=0$

Two point Form

$y-y_{1}=m\left(x-x_{1}\right)$

Parallel means the same gradient

$$
y=2 x+3 \quad y=2 x-2
$$

Perpendicular

means $m=\frac{\mathbf{- 1}}{m}$

Simultaneous equations
means solving two or more equations at the same time.

$$
\begin{gathered}
y=x \\
y=4-x
\end{gathered}
$$

Elimination

$$
y+y=x+4-x
$$

$$
\begin{aligned}
& \text { Length of line } \\
& \text { Segment }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
\end{aligned}
$$

$$
\underset{\text { of Midpoint }}{\text { Co-ordinate }}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
\begin{aligned}
& \boldsymbol{\theta}=\boldsymbol{\operatorname { t a n }}^{-\mathbf{1}}(\text { gradient }) \\
& \text { gradient }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}
\end{aligned}
$$

$$
\boldsymbol{y}=d(\boldsymbol{x}-a)(\boldsymbol{x}-b)
$$

1. See if positive or negative
2. Draw in x intercepts (which are a and b)

3. Find y intercept (make $\mathrm{x}=0$)

Turning Point Form

$$
y=a(x-h)^{2}+k
$$

1. See if positive or negative

MathsMethods.com.au
2. Draw in turning point (h, k)

General Form

1. See if positive or negative
2. Draw in y-intercept
3. Find x -intercepts if there are any $\quad x$ intercepts $=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
4. Find turning point

$$
\boldsymbol{y}=a \boldsymbol{x}^{2}+b \boldsymbol{x}+c
$$

3. Find intercepts (make $x=0$ and then $y=0$)

Covered in detail in video tutorials, see HOW TO SKETCH ANY FUNCTION

MathsMethods.com.au

5 STEPS: 1. Change form

2. Factorise inside
3. Turning Point
4. Shape
5. Reflections

Covered in detail in video tutorials, see TRANSLATION - MOVING FUNCTIONS and STRETCHING AND REFLECTING

$$
y=\frac{4}{4-x}+1
$$

1. $y=4(4-x)^{-1}+1$

$$
y=-\sqrt{2 x+4}+3
$$

$$
\text { 1. } y=-(2 x+4)^{\frac{1}{2}}+3
$$

$$
y=-(2(x+2))^{\frac{1}{2}}+3
$$

Want FREE RESOURCES on this topic? See HOW TO SKETCH ANY FUNCTION

$$
x^{2} \rightarrow-(2(x-4))^{2}+9
$$

$$
-f(x)=-x^{2}
$$

1. Reflection in the x-axis
2. Followed by a dilation of factor $1 / 2$ from the y-axis

3. Then a translation of 4 units in positive x-direction and 9 units in the positive y-direction

$\boldsymbol{f}\left(\frac{1}{a} \boldsymbol{x}\right)$ is a dilation of factor a from the y-axis
(in the x -direction)
$\boldsymbol{b} \boldsymbol{f}(\boldsymbol{x})$ is a dilation of factor \boldsymbol{b} from the x -axis
(in the y-direction)
$\boldsymbol{f}(-\boldsymbol{x})$ is a reflection in the y -axis
$-\boldsymbol{f}(\boldsymbol{x})$ is a reflection in the x -axis
$\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k}$ is a translation along the y-axis $\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{h})$ is a translation along the x -axis
Positive
$\boldsymbol{x}^{2}=\mathbf{1} \times x \times x$
$\boldsymbol{x}^{1}=1 \times x$
$x^{0}=1$

Covered in detail in video tutorials, see EXPONENTIAL LAWS (POWER LAWS)

$$
\begin{array}{lll}
\underset{\text { Power }}{\text { Negative }} & \frac{\boldsymbol{x}^{m}}{\boldsymbol{x}^{n}}=\boldsymbol{x}^{m-n} & \boldsymbol{x}^{-1}=\frac{\mathbf{1}}{\boldsymbol{x}} \\
\underset{\substack{\text { Fraction } \\
\text { Power }}}{\text { Pow }}=\boldsymbol{x}^{\frac{1}{2}}=\sqrt{\boldsymbol{x}} & \boldsymbol{x}^{\frac{1}{m}}=\sqrt[m]{\boldsymbol{x}} & \boldsymbol{x}^{\frac{m}{n}}=\sqrt[n]{\boldsymbol{x}^{m}}=(\sqrt[n]{\boldsymbol{x}})^{m}
\end{array}
$$

MathsMethods.com.au

$$
\boldsymbol{x}^{m} \boldsymbol{x}^{n}=\boldsymbol{x}^{m+n} \quad\left(\boldsymbol{x}^{m}\right)^{n}=\boldsymbol{x}^{m n} \quad\left(\frac{\boldsymbol{x}}{\boldsymbol{y}}\right)^{n}=\frac{\boldsymbol{x}^{n}}{\boldsymbol{y}^{n}}
$$

Covered in detail in video tutorials, see WHAT ARE LOGARITHMS?

Log is power

Logarithm is a Greek word

Logos means how many there are

Arithmos means number

Logarithm originally means
how many numbers

$y=\log _{e}(-2 x+4)-3$

1) Find any reflections
reflected in x-axis
2) Find any reflections reflected in y-axis
3) Find asymptote $y=-2$
4) Find intercepts
y-intercept, $x=0$
no x-intercepts
$y=-3 e^{2 x+1}-2$
$y=-3 e^{2(0)+1}-2$
$y=-3 e^{1}-2$
5) Domain R, Range (C, ∞)

Domain R, Range ($-\infty,-2$)

In a unit circle, hypotenuse always = 1

SOH CAH TOA

$$
\boldsymbol{\operatorname { c o s }}(\boldsymbol{\theta})=\frac{\text { Length of Adjacent }}{\text { Length of Hypotenuse }}=\frac{4}{5}
$$

$\boldsymbol{\operatorname { t a n }}(\boldsymbol{\theta})=\frac{\text { Length of Opposite }}{\text { Length of Adjacent }}=\frac{3}{4}$ $\boldsymbol{\operatorname { s i n }}(\boldsymbol{\theta})=$ Length of Opposite $\boldsymbol{\operatorname { c o s }}(\boldsymbol{\theta})=$ Length of Adjacent

MathsMethods.com.au

Tangent is a line which touches a
3
circle only at one point. circle only at one point.

$$
\boldsymbol{\operatorname { s i n }}(\boldsymbol{\theta})=\frac{\text { Length of Opposite }}{\text { Length of Hypotenuse }}=\frac{3}{5}
$$

$\boldsymbol{\operatorname { t a n }}(\theta)$ is the length of the tangent, cut off by the x axis and the radius.

Angle $\sin (\theta) \cos (\theta) \tan (\theta)$
0

1

0
$\frac{\pi}{6} \quad 30$

$\frac{\pi}{4}$	45	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	60	$\frac{\sqrt{3}}{2}$

$$
\begin{array}{ccc|c|c}
\frac{\pi}{3} & 60 & \frac{\sqrt{3}}{2} & \frac{1}{2} & \sqrt{3} \\
\frac{\pi}{2} & 90 & 1 & 0 & \text { undefined }
\end{array}
$$

$\frac{\sqrt{3}}{2}$

$$
\frac{1}{\sqrt{3}}
$$

1

$\cos (0)=1$

$\tan (90)=$ undefined

Graphing SIN or COS in two different forms

Covered in detail in video tutorials, see SKETCHING SIN, COS \& TAN

$$
y=A \sin (k(x-b))
$$

$$
y=A \sin (k x)+c
$$

1. Draw in starting point and amplitude
2. Period $=\frac{2 \pi}{k}=\pi$
3. Divide period into $4=\frac{\pi}{4}$
4. Add and subtract this to starting point

$$
y=3 \sin 2\left(x-\frac{\pi}{4}\right)
$$

Want FREE RESOURCES on this topic? See SKETCHING CIRCULAR FUNCTIONS

Graphing TAN

$$
y=\operatorname{Atan}(k(x-b))+c
$$

1. Draw in starting point (b, c)
2. Period $=\frac{\pi}{k}=\frac{\pi}{2}$
3. Divide period into $2=\frac{\pi}{4}$
4. Add and subtract this to starting point
5. Draw in asymptotes

$$
y=3 \tan \left(2\left(x-\frac{\pi}{4}\right)\right)+1
$$

Derivative of \boldsymbol{x}
 Other derivatives

$$
f(x)=5 x^{4} \quad f^{\prime}(x)=4 \times 5 x^{3}
$$

1. Multiply the \boldsymbol{x} by the power
2. Minus one from the power

$$
\boldsymbol{f}(\boldsymbol{x})=\text { any number } f^{\prime}(x)=0
$$

$$
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{e}^{x} \quad f^{\prime}(x)=e^{x}
$$

$$
f(x)=\ln (x) \quad f^{\prime}(x)=\frac{1}{x}
$$

MathsMethods.com.au

$$
\boldsymbol{f}(\boldsymbol{x})=\sin (x) \quad f^{\prime}(x)=\cos (x)
$$

$$
\boldsymbol{f}(\boldsymbol{x})=\cos (x) \quad f^{\prime}(x)=-\sin (x)
$$

example
$\boldsymbol{f}(\boldsymbol{x})=\tan (\boldsymbol{x}) \quad \boldsymbol{f}^{\prime}(x)=(\sec (x))^{2}$

$$
f(x)=6 x^{5}-3 x^{\frac{2}{3}}+2 x^{-1}-4
$$

$$
f^{\prime}(x)=5 \times 6 x^{4}-\frac{2}{3} \times 3 x^{-\frac{1}{3}}+-1 \times 2 x^{-2}+0 \quad(\sec (x))^{2}=\frac{1}{(\cos (x))^{2}} \quad \boldsymbol{f}^{\prime}(x)=\boldsymbol{y}^{\prime}=\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d x}}=\frac{\boldsymbol{d}}{\boldsymbol{d x}}(\boldsymbol{y})
$$

The Chain Rule

is used when functions are inside other functions
Covered in detail in video tutorials, see THE CHAIN RULE

$$
y=f(g(x))
$$

Steps of the Chain Rule

1. Determine outside function
2. Derive it but ignore inside function
3. Rewrite the inside function
4. Find derivative of inside function
5. Multiply it by derivative of the inside function
$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$ is exactly the same as

$$
\frac{d y}{d x}=f^{\prime}(g(x)) \times g^{\prime}(x)
$$

Chain Rule (short version)

1. Derive outside function
2. Multiply it by derivative of the inside function

$$
\begin{array}{cc}
\text { example 1 } & \text { example 2 } \\
\boldsymbol{y}=2\left(x^{3}-5\right)^{5} & y=\sin \left(3 x^{2}-4\right)
\end{array}
$$

1. $5 \times 2\left(x^{3}-5\right)^{4}$
2. $f(x)=\sin (x)$
$f^{\prime}(x)=\cos (x)$
3.

$\frac{d y}{d x}=5 \times 2\left(x^{3}-5\right)^{4} \times 3 x^{2}$
2. $\frac{d y}{d x}=\cos \left(3 x^{2}-4\right) \times 6 x$

$$
\frac{d y}{d x}=f^{\prime}(g(x)) \times g^{\prime}(x)
$$

$$
\begin{array}{ll}
f(x)=\sin (g(x)), & f^{\prime}(x)=g^{\prime}(x) \cos (g(x)) \\
f(x)=\cos (g(x)), & f^{\prime}(x)=-g^{\prime}(x) \sin (g(x)) \\
f(x)=\tan (g(x)), & f^{\prime}(x)=g^{\prime}(x) \sec ^{2}(g(x)) \\
\boldsymbol{f}(\boldsymbol{x})=e^{g(x)}, & f^{\prime}(x)=g^{\prime}(x) e^{g(x)} \\
\boldsymbol{f}(\boldsymbol{x})=\ln (g(x)), & f^{\prime}(x)=\frac{g^{\prime}(x)}{g(x)}
\end{array}
$$

Stationary point means where the gradient of the curve is zero.

$$
f^{\prime}(x)=0
$$

Types of S.P
absolute
local

How to find stationary points $f(x)=2 x^{3}+1$

1. Find $f^{\prime}(x)=0$ and solve for x

$$
f^{\prime}(x)=6 x^{2} \quad 6 x^{2}=0 \quad x=0
$$

2. Sub \boldsymbol{x} value into $\boldsymbol{f}(\boldsymbol{x}) \quad$ Stationary point

$$
f(0)=2(0)^{3}+\mathbb{1}=\mathbb{1} \quad \text { at }(0, \mathbb{1})
$$

3. To find type: Sub in two \boldsymbol{x} values (before and after the S.P.)

$$
f^{\prime}(-\mathbf{1})=6(-\mathbf{1})^{2} \underset{\text { positive }}{6} \quad f^{\prime}(\mathbf{1})=6(\mathbf{1})^{2}=\underset{\text { positive }}{6}
$$

It is a point of infection (see diagram below)

$$
\begin{aligned}
f^{\prime}(\text { before }) & =\text { positive } \\
f^{\prime}(\text { after }) & =\text { negative }
\end{aligned}
$$

Point of

$$
\begin{aligned}
f^{\prime}(\text { before }) & =\text { neg } \\
\mathbf{f}^{\prime}(\text { after }) & =\text { pos }
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{f}^{\prime}(\text { before }) & =\text { pos } \\
\mathbf{f}^{\prime}(\text { after }) & =\text { pos }
\end{aligned}
$$

Brackets with any power*

$$
f(x)=\int(3 x+1)^{-5} d x
$$

1. Add 1 to the power

$$
-5+1=-4
$$

2. Multiply this by number in front of the \boldsymbol{x}

$$
-4 \times 3=-12
$$

3. Divide by this number

$$
\begin{aligned}
\boldsymbol{f}(\boldsymbol{x})= & \frac{(\mathbf{3 x + 1})^{-\mathbf{4}}}{\mathbf{- 1 2}}+\boldsymbol{c} \\
& \text { *except }-1
\end{aligned}
$$

Brackets with a -1 power

$$
f(x)=\int(3 x+1)^{-1} d x
$$

1. Put it inside ln
2. Divide by number in front of the \boldsymbol{x}

$$
f(x)=\frac{1}{3} \ln |3 x+1|+c
$$

Sine and Cosine

$$
f(x)=\int \cos (5 x+2) d x
$$

1. Rewrite with sin
2. Divide by number in front of the \boldsymbol{x}

$$
f(x)=\frac{1}{5} \sin (5 x+2)+c
$$

$$
f(x)=\int \sin (3 x+2) d x
$$

1. Write down $\boldsymbol{e}^{\boldsymbol{k} \boldsymbol{x}}$ again
2. Divide by number in front of the \boldsymbol{x}

$$
f(x)=\frac{1}{7} e^{7 x}+c
$$

1. Rewrite with negative cos
2. Divide by number in front of the \boldsymbol{x}

$$
f(x)=-\frac{1}{3} \cos (3 x+2)+c
$$

$$
f(x)=\ln \left(3 x^{2}+1\right) \quad \text { Find } f^{\prime}(x) \text { and therefore find } \int \frac{x}{3 x^{2}+1}+e^{5 x} d x
$$

1. Differentiate function

$$
\frac{d}{d x} \ln \left(3 x^{2}+1\right)=\frac{6 x}{3 x^{2}+1}
$$

2. Make it look like inside the integral

$$
\begin{aligned}
& \frac{d}{d x} \ln \left(3 x^{2}+\mathbb{1}\right)=\frac{6 x}{3 x^{2}+\mathbb{1}} \\
& \frac{1}{6} \times \frac{d}{d x} \ln \left(3 x^{2}+\mathbb{1}\right)=\frac{x}{3 x^{2}+\mathbb{1}} \\
& \boldsymbol{e}^{5 x}+\frac{1}{6} \times \frac{d}{d x} \ln \left(3 x^{2}+\mathbb{1}\right)=\frac{x}{3 x^{2}+\mathbb{1}}+\boldsymbol{e}^{5 x}
\end{aligned}
$$

3. Antidiff it! MathsMethods.com.au

$$
\int e^{5 x}+\frac{1}{6} \times \frac{d}{d x} \ln \left(3 x^{2}+1\right) d x=\int \frac{x}{3 x^{2}+1}+e^{5 x} d x
$$

$$
\frac{1}{5} e^{5 x}+\frac{1}{6} \ln \left(3 x^{2}+\mathbb{1}\right)+c=\int \frac{x}{3 x^{2}+\mathbb{1}}+e^{5 x} d x
$$

$$
\int \frac{x}{3 x^{2}+1}+e^{5 x} d x=\frac{1}{5} e^{5 x}+\frac{1}{6} \ln \left(3 x^{2}+1\right)+c
$$

Covered in detail in video tutorials, see KINEMATICS - VELOCITY, ACCELERATION AND STUFF EQUATIONS

Kinematics is the subject about how objects move

$$
x=\text { displacement }
$$

$$
\frac{d x}{d t}=\text { velocity }
$$

$$
\frac{d v}{d t}=\text { acceleration }
$$

MathsMethods.com.au
Differentiate \rightarrow

\leftarrow Antidifferentiate

Distance means how far something has moved

Displacement means how far away something is

time	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Distance	$\mathbf{0}$	$\mathbf{2}$	4	5
Displacement	0	$\mathbf{2}$	0	-1

Instantaneous means gradient

Average means $\frac{\text { rise }}{\text { run }}$
two points on the curve

$$
\begin{aligned}
& \text { instantaneous } \\
& \text { velocity }=\frac{d x}{d t} \\
& \text { average } \\
& \text { velocity }=\frac{\text { rise }}{\text { run }}
\end{aligned}
$$

Discrete Random Variable is a letter that represents an outcome in terms of countable numbers

Usually use capital letter X

Races won (out of 3)

$$
\operatorname{Pr}(X=2)
$$

Sum of a die when rolling 3 times

$$
\operatorname{Pr}(X=8)
$$

A few rules

If you add all the $\operatorname{Pr}(\mathbf{X})$, it will $=\mathbf{1}$
$\operatorname{Pr}(\mathrm{X}=x)$ is always positive and never larger than 1
To find $\operatorname{Pr}(\boldsymbol{a} \leq \mathrm{X} \leq \mathbf{b})$, just add up all $\operatorname{Pr}(\mathrm{X})$ from \boldsymbol{a} to \boldsymbol{b}

Example: 10 balls in a bag: 4 blue and 6 orange
If picking 3 balls at a time (with replacement), what is probability of only getting one blue ball?

Outcome	\mathbf{X}	$\operatorname{Pr}(\mathbf{X})$
BBB	3	$0.4 \times 0.4 \times 0.4=0.064$
BBO	2	$0.4 \times 0.4 \times 0.6=0.096$
BOB	2	$0.4 \times 0.6 \times 0.4=0.096$
OBB	2	$0.6 \times 0.4 \times 0.4=0.096$
OOB	1	$0.6 \times 0.6 \times 0.4=0.144$
OBO	1	$0.6 \times 0.4 \times 0.6=0.144$
BOO	1	$0.4 \times 0.6 \times 0.6=0.144$
OOO	0	$0.6 \times 0.6 \times 0.6=0.216$

$$
\operatorname{Pr}(X=1)=0.144+\mathbf{0 . 1 4 4}+\mathbf{0 . 1 4 4}=\mathbf{0 . 4 3 2}
$$

Covered in detail in video tutorials, see NORMAL DISTRIBUTION and NORMAL DISTRIBUTION - USING STANDARD NORMAL DISTRIBUTIONS

Normal Distribution is a probability density function that looks like this:

In a normal distribution
mean $=$ mode $=$ median

Standard deviation is how stretched the distribution is

Mean is how far over it has been moved

Normal Distribution

MathsMethods.com.au

Use this template for any normal distribution, just add the values in \mathbf{X} row. Then just read off the graph!

Covered in detail in video tutorials, see WHAT ARE STATISTICS?
Statistics is the subject of collecting, summarizing and showing information in a way that can be analyzed to learn more about the group.

Like Soft Drink	600
Don't like it	400

60\% of people like Soft Drink!

Population basically means an entire group that has something in common

Sample means a small part of the population
Want FREE RESOURCES on this topic? See STATISTICS (FREE VIDEO)

Population proportion means how many have a certain attribute compared to the entire population

$$
p=\frac{\text { How many with attribute }}{\text { Total popluation }}
$$

Sample proportion means how many have a certain attribute compared to the entire sample

$$
\hat{p}=\frac{\text { How many with attribute }}{\text { Total number in sample }}=\frac{\mathbf{1}}{4}
$$

Example. A bag has 6 orange balls and 4 blue ones. Find the probability there is one blue ball in a sample of 4.

1. Find probability of one combination

$$
\operatorname{Pr}(\mathbf{B O O O})=\frac{4}{10} \times \frac{6}{9} \times \frac{5}{8} \times \frac{4}{7}=\frac{2}{21}
$$

2. Find amount of combinations

BOOO

OBOO OOBO
OOOB
OR
$\binom{4}{1}=4$
3. Multiply Probability by combinations
$\operatorname{Pr}(\hat{\boldsymbol{p}}=1 / 4)=\frac{2}{21} \times \mathbf{4}=\frac{\mathbf{8}}{\mathbf{2 1}}$
For more resources, see MathsMethods.com.au

Final thoughts \& extra resources!

Hope you have enjoyed this material! If you have any comments or feedback, please feel free to contact me at alex@mathsmethods.com.au. Good luck!

Free Exam Questions with Worked Solutions

Click here to access

Free Calculus Mini Course

Click here to access
Maths Methods Workshop
Register your seat!
Kind regards

Alex Bell | Founder of MathsMethods.com.au

Maths Methods Video Tutorials

The whole year in detail with plenty of practice questions and exam-style tests! Year 12: Get instant access!
Year 11: Get instant access!

More Free resources!

Get informed about your last years in Secondary School. It's worth a read!

1. Understanding ATAR

How ATAR is Calculated
How SACs Affect Your ATAR
Why Life Doesn't Depend on ATAR
2. Study Techniques

How to Study Effectively
Exam Technique for Better Marks
How to Make a Bound Reference
3. More Resources

Maths Methods Discussion Group Maths Methods Music Videos

Did you like these cheatsheets?

Get the full Maths Methods Overview!

The full 87 page downloadable book! MathsMethods.com.au/overview

