13 Free Cheatsheets! Var 111 WATHS METHODS free Overview vi.ss

FREE LESSONS AT: MathsMethods.com.au

You can download this book for free, get video lessons, exam questions and much more! All for free! Just sign up with your email.

$$
f(-x)=f(x)
$$

Purpose of this book

Hello!

This is a brief overview of Units $1 \& 2$ Mathematical Methods to help you learn and revise more efficiently. It is essentially a cut down version of the Units 3 \& 4 Overview.

It was originally designed as a reference book for students who use the online video tutorials on MathsMethods.com.au but has since been used by many as their Bound Reference. Each page has a clickable link to direct you to the relevant video tutorial if you have access and there's plenty of other free resources if you don't!

Please note, like many of our resources, this overview is designed to reinforce understanding and may not use the exact notation you need to use when doing tests and exams.

Do well and I hope this overview makes the year a little less stressful for you :)

Kind regards
Whex
Alexander Bell | Author \& Founder of MathsMethods.com.au

Contents

Click a page number to instantly move to that topic

1. Purpose of the Book (Read First!) page 2
2. Contents page 3 to 6
3. TOPIC 1: Functions and Relations page 7
4. Linear Equations page 8
5. How to draw Parabolas page 9
6. List of Main Functions page 10
7. How to Sketch Any Function page 11
8. Transformations page 12
9. Matrix Transformations page 13
10. Domain and Range. page 14
11. Reading Any Function page 15
12. Sketching Functions in Intercept Form page 16
13. Inverse Functions page 17
14. Factorising Polynomials page 18

Contents

15. TOPIC 2: Logs and Exponentials. page 19
16. Exponential Laws page 20
17. Understanding Logarithms. page 21
18. Log Laws. page 22
19. Sketching Logs and Exponentials. page 23
20. Inverse Functions: Logs and Exponentials page 24
21. TOPIC 3: Sin, Cos \& Tan. page 25
22. Sin, Cos and Tan Definitions page 26
23. Radians page 27
24. Exact Values. page 28
25. Exact Values - for larger numbers page 29
26. Finding Angles (θ) page 30
27. General Solutions for $\operatorname{Sin}, \operatorname{Cos}$ and Tan page 31
28. Understanding Sin, Cos \& Tan Graphs. page 32

Contents

29. Sketching Sin, Cos \& Tan Graphs page 33
30. Sketching a Tough Cosine Graph page 34
31. TOPIC 4: Calculus page 35
32. What is Calculus? page 36
33. The First Principle of Calculus page 37
34. How to Sketch $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ (The Derivative) page 38
35. Finding $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ (The Derivative) page 39
36. Derivatives and Differentiating Definitions. page 40
37. Understanding $\boldsymbol{d y} / \boldsymbol{d x}$. page 41
38. Stationary Points page 42
39. Rate of Change. page 43
40. Antidifferentiation page 44
41. Why $+c$? page 45
42. Integration - Exact Area page 46

Contents

43. Kinematics - Displacement, Velocity and Acceleration page 47
44. TOPIC 5: Probability and Statistics page 48
45. Basics of Probability page 49
46. Conditional and Independent Probability page 50
47. Discrete Random Variables page 51
48. Measures of Centre page 52
49. Measures of Spread page 53
50. Final Thought from the Author page 54
51. Distribution Information and Disclaimer page 55

Covered in detail in video tutorials, see LINEAR EQUATIONS
Gradient-Intercept Form
$y=m x+c$
m means gradient c means y-intercept

Intercept Form

$a x+b y=c$

To find x -intercept, make $\mathbf{y}=0$
To find y -intercept, make $\mathrm{x}=0$

Two point Form

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$\left(x_{1}, y_{1}\right)$ is any point on the line
$\left(x_{2}, y_{2}\right)$ is any different point on the line

Parallel means the same gradient

Perpendicular

 means $m=\frac{\mathbf{- 1}}{m}$$$
y=2 x+3 \quad y=2 x-2
$$

Simultaneous equations
means solving two or more equations at the same time.

$$
\begin{gathered}
y=x \\
y=4-x
\end{gathered}
$$

Elimination

$$
y+y=x+4-x
$$

Intercept Form

$$
\boldsymbol{y}=d(\boldsymbol{x}-a)(\boldsymbol{x}-b)
$$

1. See if positive or negative
2. Draw in x intercepts (which are a and b)
3. Find y intercept (make $x=0$)

Turning Point Form

$$
y=a(x-h)^{2}+k
$$

1. See if positive or negative

MathsMethods.com.au
2. Draw in turning point (h, k)
3. Find intercepts (make $x=0$ and then $y=0$)

General Form

$$
\boldsymbol{y}=a \boldsymbol{x}^{2}+b \boldsymbol{x}+c
$$

1. See if positive or negative
2. Draw in y-intercept
3. Find x-intercepts if there are any

$$
x \text { intercepts }=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

4. Find turning point

Covered in detail in video tutorials, see HOW TO SKETCH ANY FUNCTION

MathsMethods.com.au

5 STEPS: 1. Change form

2. Factorise inside
3. Turning Point
4. Shape
5. Reflections

Covered in detail in video tutorials, see TRANSLATION - MOVING FUNCTIONS and STRETCHING AND REFLECTING

$$
y=\frac{4}{4-x}+1
$$

$$
y=3 \sqrt{6-2 x}+1
$$

$$
\begin{array}{r}
\text { 1. } y=3(6-2 x)^{\frac{1}{2}}+1 \\
\text { 2. } y=3\left(\left(-2(x-3)^{\frac{1}{2}}\right)+1\right.
\end{array}
$$

1. $y=4(4-x)^{-1}+1$
2. Negative in front of x,
flip around the y-axis
3. Negative in front of x,
flip around the y-axis

$$
y=-\sqrt{2 x+4}+3
$$

$$
\text { 1. } y=-(2 x+4)^{\frac{1}{2}}+3
$$

$$
y=-(2(x+2))^{\frac{1}{2}}+3
$$

$$
x^{2} \rightarrow-(2(x-4))^{2}+9
$$

$$
-f(x)=-x^{2}
$$

1. Reflection in the x-axis
2. Followed by a dilation of factor $1 / 2$ from the y-axis

3. Then a translation of 4 units in positive x-direction and 9 units in the positive y-direction

$\boldsymbol{f}\left(\frac{1}{a} \boldsymbol{x}\right)$ is a dilation of factor a from the y-axis
(in the x -direction)
$\boldsymbol{b} \boldsymbol{f}(\boldsymbol{x})$ is a dilation of factor \boldsymbol{b} from the x -axis
(in the y-direction)
$\boldsymbol{f}(-\boldsymbol{x})$ is a reflection in the y-axis
$-\boldsymbol{f}(\boldsymbol{x})$ is a reflection in the x -axis
$\boldsymbol{f}(\boldsymbol{x})+\boldsymbol{k}$ is a translation along the y -axis $\boldsymbol{f}(\boldsymbol{x}-\boldsymbol{h})$ is a translation along the x -axis
Positive

$$
x^{2}=1 \times x \times x
$$

$$
x^{1}=1 \times x
$$

$$
x^{0}=1
$$

Covered in detail in video tutorials, see EXPONENTIAL LAWS (POWER LAWS)

$$
\begin{array}{cc}
\substack{\text { Negative } \\
\text { Power }} & \boldsymbol{x}^{m} \\
\boldsymbol{x}^{n}=\boldsymbol{x}^{m-n} & \boldsymbol{x}^{-1}=\frac{\mathbf{1}}{\boldsymbol{x}} \\
\begin{array}{c}
\text { Fraction } \\
\text { Power } \\
\text { MathsMethods.com.au }
\end{array} & \boldsymbol{x}^{\frac{1}{2}}=\sqrt{\boldsymbol{x}} \\
& \boldsymbol{x}^{\frac{\mathbf{1}}{m}}=\sqrt[m]{\boldsymbol{x}} \\
& \boldsymbol{x}^{m} \boldsymbol{x}^{n}=\boldsymbol{x}^{m+n} \\
& \left(\boldsymbol{x}^{m}\right)^{n}=\boldsymbol{x}^{m n} \\
& \boldsymbol{x}^{\frac{m}{n}}=\sqrt[n]{\boldsymbol{x}^{m}} \\
&
\end{array}
$$

Log is power

Logarithm is a Greek word

Logos means how many there are

$\log _{2} 8=3$

How many 2s are multiplied together

Arithmos means number

Logarithm originally means how many numbers

$y=\log _{e}(-2 x+4)-3$

1) Find any reflections reflected in y-axis
2) Find asymptote

$$
(-2 x+4)=0 \quad x=2
$$

3) Find intercepts x-intercept, $y=0$

$$
\begin{array}{ll}
y \text {-intercept, } x=0 & 0=\log _{e}(-2 x+4)-3 \\
y=\log _{e}(4)-3 & 3=\log _{e}(-2 x+4) \\
& e^{3}=-2 x+4 \\
& x=-1 / 2\left(e^{3}-4\right)
\end{array}
$$

4) Domain (asymptote, ∞), Range R) Domain ($-\infty$, 2), Range R

For more resources, see
MathsMethods.com.au

Covered in detail in video tutorials, see DEFINITIONS OF SIN AND COS and THE UNIT CIRCLE

SOH CAH TOA

In a unit circle, hypotenuse always = 1
$\boldsymbol{\operatorname { s i n }}(\boldsymbol{\theta})=$ Length of Opposite
$\boldsymbol{\operatorname { c o s }}(\boldsymbol{\theta})=$ Length of Adjacent

$\boldsymbol{\operatorname { c o s }}(\boldsymbol{\theta})=\frac{\text { Length of Adjacent }}{\text { Length of Hypotenuse }}=\frac{4}{5}$
$\boldsymbol{\operatorname { t a n }}(\boldsymbol{\theta})=\frac{\text { Length of Opposite }}{\text { Length of Adjacent }}=\frac{3}{4}$

MathsMethods.com.au

Tangent is a line which touches a circle only at one point.
3
4
$\boldsymbol{\operatorname { s i n }}(\boldsymbol{\theta})=\frac{\text { Length of Opposite }}{\text { Length of Hypotenuse }}=\frac{3}{5}$

$\boldsymbol{\operatorname { t a n }}(\boldsymbol{\theta})$ is the length of the tangent, cut off by the x axis and the radius.

$0 \quad 0$

$\frac{\pi}{6}$	30	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	45	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1

$$
\begin{array}{lll}
\frac{\pi}{3} & 60 & \frac{\sqrt{3}}{2}
\end{array}
$$

1
0

$$
\begin{array}{l|l}
\frac{1}{2} & \sqrt{3}
\end{array}
$$

$$
\begin{array}{ll|l}
\frac{\pi}{2} & 90 & 1 \tag{0}
\end{array}
$$

$\cos (0)=1$

$\tan (90)=$ undefined

Graphing SIN or COS in two different forms

$$
y=A \sin (k(x-b))
$$

$$
y=A \sin (k x)+c
$$

1. Draw in starting point and amplitude
2. Period $=\frac{2 \pi}{k}=\pi$
3. Divide period into $4=\frac{\pi}{4}$
4. Add and subtract this to starting point
5. Find intercepts (see next page)

$$
y=3 \sin 2\left(x-\frac{\pi}{4}\right)
$$

$$
y=3 \cos (2 x)+1
$$

Want FREE RESOURCES on this topic? See SKETCHING CIRCULAR FUNCTIONS

Graphing TAN

$$
y=A \tan (k(x-b))+c
$$

1. Draw in starting point (b, c)
2. Period $=\frac{\pi}{k}=\frac{\pi}{2}$
3. Divide period into $2=\frac{\pi}{4}$
4. Add and subtract this to starting point
5. Draw in asymptotes

$$
y=3 \tan \left(2\left(x-\frac{\pi}{4}\right)\right)+1
$$

Derivative of \boldsymbol{x}

$$
f(x)=5 x^{4} \quad f^{\prime}(x)=4 \times 5 x^{3}
$$

1. Multiply the \boldsymbol{x} by the power
2. Minus one from the power

$$
\boldsymbol{f}(\boldsymbol{x})=\text { any number } f^{\prime}(x)=0
$$

example

$$
f(x)=6 x^{5}-3 x^{\frac{2}{3}}+2 x^{-1}-4
$$

$$
f^{\prime}(x)=5 \times 6 x^{4}-\frac{2}{3} \times 3 x^{-\frac{1}{3}}+-1 \times 2 x^{-2}+0
$$

$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$ is exactly the same as

$$
\frac{d y}{d x}=f^{\prime}(g(x)) \times g^{\prime}(x)
$$

Chain Rule (short version)

1. Derive outside function
2. Multiply it by derivative of the inside function

$$
\begin{gathered}
y=2\left(x^{3}-5\right)^{5} \\
\text { 1. } \quad 5 \times 2\left(x^{3}-5\right)^{4} \\
\text { 2. } \frac{d y}{d x}=5 \times 2\left(x^{3}-5\right)^{4} \times 3 x^{2}
\end{gathered}
$$

Stationary point means where the gradient of the curve is zero.

How to find stationary points $f(x)=2 x^{3}+1$

1. Find $f^{\prime}(x)=0$ and solve for x

$$
f^{\prime}(x)=6 x^{2} \quad 6 x^{2}=0 \quad x=0
$$

2. Sub \boldsymbol{x} value into $\boldsymbol{f}(\boldsymbol{x}) \quad$ Stationary point

$$
f(0)=2(0)^{3}+\mathbb{1}=\mathbb{1} \quad \text { at }(0,1)
$$

3. To find type: Sub in two \boldsymbol{x} values (before and after the S.P.)

$$
f^{\prime}(-\mathbf{1})=6(-\mathbf{1})^{2}=\underset{\text { positive }}{6} \quad f^{\prime}(\mathbf{1})=6(\mathbf{1})^{2}=\underset{\text { positive }}{6}
$$

It is a point of infection (see diagram below)

$$
\begin{aligned}
f^{\prime}(\text { before }) & =\text { positive } \\
f^{\prime}(\text { after }) & =\text { negative }
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{f}^{\prime}(\text { before }) & =\boldsymbol{n e g} \\
\boldsymbol{f}^{\prime}(\text { after }) & =\text { pos }
\end{aligned}
$$

Point of
inflexion

$$
f^{\prime}(\text { before })=\text { pos }
$$

$$
f^{\prime}(\text { after })=p o s
$$

Kinematics is the subject about how objects move

$$
x=\text { displacement }
$$

$$
\frac{d x}{d t}=\text { velocity }
$$

$$
\frac{d v}{d t}=\text { acceleration }
$$

MathsMethods.com.au
Differentiate \rightarrow

\leftarrow Antidifferentiate

Distance means how far something has moved

Displacement means how far away something is

time	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Distance	$\mathbf{0}$	$\mathbf{2}$	4	5
Displacement	0	$\mathbf{2}$	0	-1

Instantaneous means gradient
one point on the curve

Average means $\frac{\text { rise }}{\text { run }}$
two points on the curve

$$
\begin{aligned}
& \text { instantaneous } \\
& \text { velocity }=\frac{d x}{d t} \\
& \text { average } \\
& \text { velocity }=\frac{\text { rise }}{\text { run }}
\end{aligned}
$$

Discrete Random Variable is a letter that represents an outcome in terms of countable numbers

Usually use capital letter X

Races won (out of 3)

$$
\operatorname{Pr}(X=2)
$$

Sum of a die when rolling 3 times

$$
\operatorname{Pr}(X=8)
$$

MathsMethods.com.au

A few rules

If you add all the $\operatorname{Pr}(\mathbf{X})$, it will $=\mathbf{1}$
$\operatorname{Pr}(\mathrm{X}=x)$ is always positive and never larger than 1
To find $\operatorname{Pr}(\boldsymbol{a} \leq \mathrm{X} \leq \mathbf{b})$, just add up all $\operatorname{Pr}(\mathrm{X})$ from \boldsymbol{a} to \boldsymbol{b}

Example: 10 balls in a bag: 4 blue and 6 orange
If picking 3 balls at a time (with replacement), what is probability of only getting one blue ball?

Outcome	\mathbf{X}	$\operatorname{Pr}(\mathbf{X})$
BBB	3	$0.4 \times 0.4 \times 0.4=0.064$
BBO	2	$0.4 \times 0.4 \times 0.6=0.096$
BOB	2	$0.4 \times 0.6 \times 0.4=0.096$
OBB	2	$0.6 \times 0.4 \times 0.4=0.096$
OOB	1	$0.6 \times 0.6 \times 0.4=0.144$
OBO	1	$0.6 \times 0.4 \times 0.6=0.144$
BOO	1	$0.4 \times 0.6 \times 0.6=0.144$
OOO	0	$0.6 \times 0.6 \times 0.6=0.216$

$$
\operatorname{Pr}(X=1)=0.144+\mathbf{0 . 1 4 4}+\mathbf{0 . 1 4 4}=\mathbf{0 . 4 3 2}
$$

Final thoughts \& extra resources!

Hope you have enjoyed this material! If you have any comments or feedback, please feel free to contact me at alex@mathsmethods.com.au. Good luck!

Free Exam Questions with Worked Solutions

Click here to access

Free Calculus Mini Course

Click here to access
Maths Methods Workshop
Register your seat!
Kind regards

Alex Bell | Founder of MathsMethods.com.au

Maths Methods Video Tutorials

The whole year in detail with plenty of practice questions and exam-style tests! Year 12: Get instant access!
Year 11: Get instant access!

More Free resources!

Get informed about your last years in Secondary School. It's worth a read!

1. Understanding ATAR

How ATAR is Calculated
How SACs Affect Your ATAR
Why Life Doesn't Depend on ATAR
2. Study Techniques

How to Study Effectively
Exam Technique for Better Marks
How to Make a Bound Reference
3. More Resources

Maths Methods Discussion Group Maths Methods Music Videos

Did you like these cheatsheets?

Get the full Maths Methods Overview!

The full 55 page downloadable book! MathsMethods.com.au/overview

