2022 VCAA Maths Methods Exam 2

This is the full VCE Maths Methods Exam with worked solutions. You can also try Mini-Tests, which are official VCAA exams split into short tests you can do anytime.

Number of marks: 80

Reading time: 15 minutes

Writing time: 2 hours

Section A β€“ Multiple-choice questions
Instructions
β€’ Answer all questions in pencil on your Multiple-Choice Answer Sheet.
β€’ Choose the response that is correct for the question.
β€’ A correct answer scores 1; an incorrect answer scores 0.
β€’ Marks will not be deducted for incorrect answers.
β€’ No marks will be given if more than one answer is completed for any question.
β€’ Unless otherwise indicated, the diagrams in this book are not drawn to scale.


Question 1 [2022 Exam 2 Section A Q1]

The period of the function \( f(x) = 3\cos(2x + \pi) \) is

  • A. \(2\pi\)
  • B. \( \pi \)
  • C. \( \frac{2\pi}{3} \)
  • D. 2
  • E. 3
Correct Answer: B
Click here for full solution
Question 2 [2022 Exam 2 Section A Q2]

The graph of \( y = \frac{1}{(x + 3)^2} + 4 \) has a horizontal asymptote with the equation

  • A. \( y = 4 \)
  • B. \( y = 3 \)
  • C. \( y = 0 \)
  • D. \( x = -2 \)
  • E. \( x = -3 \)
Correct Answer: B
Click here for full solution
Question 3 [2022 Exam 2 Section A Q3]

The gradient of the graph of \( y = e^{3x} \) at the point where the graph crosses the vertical axis is equal to

  • A. 0
  • B. \( \frac{1}{e} \)
  • C. 1
  • D. e
  • E. 3
Correct Answer: E
Click here for full solution
Question 4 [2022 Exam 2 Section A Q4]

Which one of the following functions is not continuous over the interval \( x \in [0, 5] \)?

  • A. \( f(x) = \frac{1}{(x + 3)^2} \)
  • B. \( f(x) = \sqrt{x + 3} \)
  • C. \( f(x) = x^\frac{1}{3} \)
  • D. \( f(x) = \tan\left(\frac{x}{3}\right) \)
  • E. \( f(x) = \sin^2\left(\frac{x}{3}\right) \)
Correct Answer: D
Click here for full solution
Question 5 [2022 Exam 2 Section A Q5]

The largest value of \( a \) such that the function \( f : (-\infty, a] \to \mathbb{R}, f(x) = x^2 + 3x - 10 \), where \( f \) is one-to-one, is

  • A. –12.25
  • B. –5
  • C. –1.5
  • D. 0
  • E. 2
Correct Answer: C
Click here for full solution
Question 6 [2022 Exam 2 Section A Q6]

Which of the pairs of functions below are not inverse functions?

  • A. \( \begin{cases} f(x) = 5x + 3 \quad x \in \mathbb{R} \\ g(x) = \frac{x - 3}{5} \quad x \in \mathbb{R} \end{cases} \)


  • B. \( \begin{cases} f(x) = \frac{2}{3}x + 2 \quad x \in \mathbb{R} \\ g(x) = \frac{3}{2}x - 3 \quad x \in \mathbb{R} \end{cases} \)


  • C. \( \begin{cases} f(x) = x^2 \quad x < 0 \\ g(x) = \sqrt{x} \quad x > 0 \end{cases} \)


  • D. \( \begin{cases} f(x) = \frac{1}{x} \quad x \ne 0 \\ g(x) = \frac{1}{x} \quad x \ne 0 \end{cases} \)


  • E. \( \begin{cases} f(x) = \log_e(x) + 1 \quad x > 0 \\ g(x) = e^{x - 1} \quad x \in \mathbb{R} \end{cases} \)
Correct Answer: C
Click here for full solution
Question 7 [2022 Exam 2 Section A Q7]

The graph of \( y = f(x) \) is shown below.

Graph of y = f(x)

The graph of \( y = f'(x) \), the first derivative of \( f(x) \) with respect to \( x \), could be

Options for f prime graph
Correct Answer: E
Click here for full solution
Question 8 [2022 Exam 2 Section A Q8]

If \( \int_0^b f(x)\,dx = 10 \) and \( \int_0^a f(x)\,dx = -4 \), where \( 0 < a < b \), then \( \int_a^b f(x)\,dx \) is equal to

  • A. –6
  • B. –4
  • C. 0
  • D. 10
  • E. 14
Correct Answer: E
Click here for full solution
Question 9 [2022 Exam 2 Section A Q9]

Diagram for Q9

Let \( f : [0, \infty) \to \mathbb{R}, \ f(x) = \sqrt{2x + 1} \).
The shortest distance, \( d \), from the origin to the point \( (x, y) \) on the graph of \( f \) is given by

  • A. \( d = x^2 + 2x + 1 \)
  • B. \( d = x^2 + \sqrt{2x + 1} \)
  • C. \( d = \sqrt{x^2 - 2x + 1} \)
  • D. \( d = x + 1 \)
  • E. \( d = 2x + 1 \)
Correct Answer: D
Click here for full solution
Question 10 [2022 Exam 2 Section A Q10]

An organisation randomly surveyed 1000 Australian adults and found that 55% of those surveyed were happy with their level of physical activity.
An approximate 95% confidence interval for the percentage of Australian adults who were happy with their level of physical activity is closest to

  • A. (4.1, 6.9)
  • B. (50.9, 59.1)
  • C. (52.4, 57.6)
  • D. (51.9, 58.1)
  • E. (45.2, 64.8)
Correct Answer: D
Click here for full solution
Question 11 [2022 Exam 2 Section A Q11]

If \( \frac{d}{dx} \left( x \cdot \sin(x) \right) = \sin(x) + x \cdot \cos(x) \), then \( \frac{1}{k} \int x \cos(x)\, dx \) is equal to

  • A. \( k \left( x \cdot \sin(x) - \int \sin(x)\, dx \right) + c \)
  • B. \( \frac{1}{k} \cdot x \cdot \sin(x) - \int \sin(x)\, dx + c \)
  • C. \( \frac{1}{k} \left( x \cdot \sin(x) - \int \sin(x)\, dx \right) + c \)
  • D. \( \frac{1}{k} (x \cdot \sin(x) - \sin(x)) + c \)
  • E. \( \frac{1}{k} \left( \int x \cdot \sin(x)\, dx - \int \sin(x)\, dx \right) + c \)
Correct Answer: C
Click here for full solution
Question 12 [2022 Exam 2 Section A Q12]

A bag contains three red pens and \( x \) black pens. Two pens are randomly drawn from the bag without replacement.
The probability of drawing a pen of each colour is equal to

  • A. \( \frac{6x}{(2 + x)(3 + x)} \)
  • B. \( \frac{3x}{(2 + x)(3 + x)} \)
  • C. \( \frac{x}{2 + x} \)
  • D. \( \frac{3 + x}{(2 + x)(3 + x)} \)
  • E. \( \frac{3 + x}{5 + 2x} \)
Correct Answer: A
Click here for full solution
Question 13 [2022 Exam 2 Section A Q13]

The function \( f(x) = \log\left(\frac{a + x}{a - x}\right) \), where \( a \) is a positive real constant, has the maximal domain

  • A. [–a, a]
  • B. (–a, a)
  • C. \( \mathbb{R} \setminus [–a, a] \)
  • D. \( \mathbb{R} \setminus (–a, a) \)
  • E. \( \mathbb{R} \)
Correct Answer: C
Click here for full solution
Question 14 [2022 Exam 2 Section A Q14]

A continuous random variable, \( X \), has a probability density function given by

\[ f(x) = \begin{cases} \frac{2}{9}x e^{-\frac{1}{9}x^2}, & x \geq 0 \\ 0, & x < 0 \end{cases} \]

The expected value of \( X \), correct to three decimal places, is

  • A. 1.000
  • B. 2.659
  • C. 3.730
  • D. 6.341
  • E. 9.000
Correct Answer: B
Click here for full solution
Question 15 [2022 Exam 2 Section A Q15]

The maximal domain of the function with rule \( f(x) = \sqrt{x^2 - 2x - 3} \) is given by

  • A. \( (-\infty, \infty) \)
  • B. \( (-\infty, -3) \cup (3, \infty) \)
  • C. \( (-1, 3) \)
  • D. [–3, 1]
  • E. \( (-\infty, -1] \cup [3, \infty) \)
Correct Answer: E
Click here for full solution
Question 16 [2022 Exam 2 Section A Q16]

The function \( f(x) = \frac{1}{3}x^3 + mx^2 + nx + p \), for \( m, n, p \in \mathbb{R} \), has turning points at \( x = -3 \) and \( x = 1 \) and passes through the point (3, 4).
The values of \( m, n \) and \( p \) respectively are

  • A. \( m = 0, n = -\frac{7}{3}, p = 2 \)
  • B. \( m = 1, n = -3, p = -5 \)
  • C. \( m = -1, n = -3, p = 13 \)
  • D. \( m = \frac{5}{4}, n = \frac{3}{2}, p = -\frac{83}{4} \)
  • E. \( m = \frac{5}{2}, n = 6, p = -\frac{91}{2} \)
Correct Answer: B
Click here for full solution
Question 17 [2022 Exam 2 Section A Q17]

A function \( g \) is continuous on the domain \( x \in [a, b] \) and has the following properties:
β€’ The average rate of change of \( g \) between \( x = a \) and \( x = b \) is positive.
β€’ The instantaneous rate of change of \( g \) at \( x = \frac{a + b}{2} \) is negative.
Therefore, on the interval \( x \in [a, b] \), the function must be

  • A. many-to-one
  • B. one-to-many
  • C. one-to-one
  • D. strictly decreasing
  • E. strictly increasing
Correct Answer: A
Click here for full solution
Question 18 [2022 Exam 2 Section A Q18]

If \( X \) is a binomial random variable where \( n = 20, p = 0.88 \), and \( \Pr(X \geq 16 \mid X \geq a) = 0.9175 \), correct to four decimal places, then \( a \) is equal to

  • A. 11
  • B. 12
  • C. 13
  • D. 14
  • E. 15
Correct Answer: B
Click here for full solution
Question 19 [2022 Exam 2 Section A Q19]

A box is formed from a rectangular sheet of cardboard, which has a width of \( a \) units and a length of \( b \) units, by first cutting out squares of side length \( x \) units from each corner and then folding up to form an open-top container.
The maximum volume of the box occurs when \( x \) is equal to

  • A. \( \frac{a - b + \sqrt{a^2 - ab + b^2}}{6} \)
  • B. \( \frac{a + b + \sqrt{a^2 - ab + b^2}}{6} \)
  • C. \( \frac{a - b - \sqrt{a^2 - ab + b^2}}{6} \)
  • D. \( \frac{a + b - \sqrt{a^2 - ab + b^2}}{6} \)
  • E. \( \frac{a + b - \sqrt{a^2 - 2ab + b^2}}{6} \)
Correct Answer: D
Click here for full solution
Question 20 [2022 Exam 2 Section A Q20]

A soccer player kicks a ball with an angle of elevation \( \theta^\circ \), where \( \theta \) is a normally distributed random variable with a mean of 42Β° and a standard deviation of 8Β°.
The horizontal distance that the ball travels before landing is given by the function \( d = 50 \sin(2\theta) \).
The probability that the ball travels more than 40 m horizontally before landing is closest to

  • A. 0.969
  • B. 0.937
  • C. 0.226
  • D. 0.149
  • E. 0.027
Correct Answer: A
Click here for full solution

End of Section A


Section B
Instructions
β€’ Answer all questions in the spaces provided.
β€’ Write your responses in English.
β€’ In questions where a numerical answer is required, an exact value must be given unless otherwise specified.
β€’ In questions where more than one mark is available, appropriate working must be shown.
β€’ Unless otherwise indicated, the diagrams in this book are not drawn to scale.


Question 1 [2022 Exam 2 Section B Q1]

The diagram below shows part of the graph of \( y = f(x) \), where \( f(x) = \frac{x^2}{12} \).

Graph of f(x) = x^2/12

a. State the equation of the axis of symmetry of the graph of \( f \). 1 mark

b. State the derivative of \( f \) with respect to \( x \). 1 mark

The tangent to \( f \) at point M has gradient βˆ’2.

c. Find the equation of the tangent to \( f \) at point M. 2 marks

The diagram below shows part of the graph of \( y = f(x) \), the tangent to \( f \) at point M and the line perpendicular to the tangent at point M.

Graph for Q1d

d. i. Find the equation of the line perpendicular to the tangent passing through point M. 1 mark

ii. The line perpendicular to the tangent at point M also cuts \( f \) at point N, as shown in the diagram above.
Find the area enclosed by this line and the curve \( y = f(x) \). 2 marks

e. Another parabola is defined by the rule \( g(x) = \frac{x^2}{4a} \), where \( a > 0 \).
A tangent to \( g \) and the line perpendicular to the tangent at \( x = -b \), where \( b > 0 \), are shown below.

Graph for Q1e

Find the value of \( b \), in terms of \( a \), such that the shaded area is a minimum. 4 marks

Question 2 [2022 Exam 2 Section B Q2]

On a remote island, there are only two species of animals: foxes and rabbits. The foxes are the predators and the rabbits are their prey.

The populations of foxes and rabbits increase and decrease in a periodic pattern, with the period of both populations being the same, as shown in the graph below, for all \( t \geq 0 \), where time \( t \) is measured in weeks.

One point of minimum fox population, \( (20, 700) \), and one point of maximum fox population, \( (100, 2500) \), are also shown on the graph.

The graph has been drawn to scale.

Graph of fox and rabbit populations

a. i. State the initial population of rabbits. 1 mark

ii. State the minimum and maximum population of rabbits. 1 mark

iii. State the number of weeks between maximum populations of rabbits. 1 mark

The population of foxes can be modelled by the rule \( f(t) = a \sin\big(b(t - 60)\big) + 1600 \).

b. Show that \( a = 900 \) and \( b = \frac{\pi}{80} \). 2 marks

c. Find the maximum combined population of foxes and rabbits. Give your answer correct to the nearest whole number. 1 mark

d. What is the number of weeks between the periods when the combined population of foxes and rabbits is a maximum? 1 mark

[The following question is no longer on the curriculum]

The population of foxes is better modelled by the transformation of \( y = \sin(t) \) under \( Q : \mathbb{R}^2 \rightarrow \mathbb{R}^2, \, Q \begin{pmatrix} t \\ y \end{pmatrix} = \begin{pmatrix} \frac{90}{\pi} & 0 \\ 0 & 900 \end{pmatrix} \begin{pmatrix} t \\ y \end{pmatrix} + \begin{pmatrix} 60 \\ 1600 \end{pmatrix} \).

e. Find the average population during the first 300 weeks for the combined population of foxes and rabbits, where the population of foxes is modelled by the transformation of \( y = \sin(t) \) under the transformation \( Q \). Give your answer correct to the nearest whole number. 4 marks

Over a longer period of time, it is found that the increase and decrease in the population of rabbits gets smaller and smaller.

The population of rabbits over a longer period of time can be modelled by the rule

\( s(t) = 1700 \cdot e^{-0.003t} \cdot \sin\left( \frac{\pi t}{80} \right) + 2500, \quad \text{for all } t \geq 0 \)

f. Find the average rate of change between the first two times when the population of rabbits is at a maximum. Give your answer correct to one decimal place. 2 marks

g. Find the time, where \( t > 40 \), in weeks, when the rate of change of the rabbit population is at its greatest positive value. Give your answer correct to the nearest whole number. 2 marks

h. Over time, the rabbit population approaches a particular value.
State this value. 1 mark

Question 3 [2022 Exam 2 Section B Q3]

Mika is flipping a coin. The unbiased coin has a probability of \( \frac{1}{2} \) of landing on heads and \( \frac{1}{2} \) of landing on tails.

Let \( X \) be the binomial random variable representing the number of times that the coin lands on heads. Mika flips the coin five times.

a. i. Find \( \Pr(X = 5) \). 1 mark

ii. Find \( \Pr(X \geq 2) \). 1 mark

iii. Find \( \Pr(X \geq 2 \mid X < 5) \), correct to three decimal places. 2 marks

iv. Find the expected value and the standard deviation for \( X \). 2 marks

The height reached by each of Mika’s coin flips is given by a continuous random variable, \( H \), with the probability density function

\[ f(h) = \begin{cases} ah^2 + bh + c, & 1.5 \leq h \leq 3 \\ 0, & \text{otherwise} \end{cases} \]

where \( h \) is the vertical height reached by the coin flip, in metres, between the coin and the floor, and \( a, b, c \in \mathbb{R} \).

b. i. State the value of the definite integral \( \int_{1.5}^{3} f(h) \, dh \). 1 mark

ii. Given that \( \Pr(H \leq 2) = 0.35 \) and \( \Pr(H \geq 2.5) = 0.25 \), find the values of \( a \), \( b \), and \( c \). 3 marks

iii. The ceiling of Mika’s room is 3 m above the floor. The minimum distance between the coin and the ceiling is a continuous random variable, \( D \), with probability density function \( g \).

The function \( g \) is a transformation of the function \( f \) given by \( g(d) = f(rd + s) \), where \( d \) is the minimum distance between the coin and the ceiling, and \( r \) and \( s \) are real constants.

Find the values of \( r \) and \( s \). 1 mark

c. Mika’s sister Bella also has a coin. On each flip, Bella’s coin has a probability of \( p \) of landing on heads and \( (1 - p) \) of landing on tails, where \( p \) is a constant value between 0 and 1.

Bella flips her coin 25 times in order to estimate \( p \).

Let \( \hat{P} \) be the random variable representing the proportion of times that Bella’s coin lands on heads in her sample.

i. Is the random variable \( \hat{P} \) discrete or continuous? Justify your answer. 1 mark

ii. If \( \hat{p} = 0.4 \), find an approximate 95% confidence interval for \( p \), correct to three decimal places. 1 mark

iii. Bella knows that she can decrease the width of a 95% confidence interval by using a larger sample of coin flips.

If \( \hat{p} = 0.4 \), how many coin flips would be required to halve the width of the confidence interval found in part c.ii.? 1 mark

Question 4 [2022 Exam 2 Section B Q4]

Consider the function \( f : \left( -\frac{1}{2}, \frac{1}{2} \right) \rightarrow \mathbb{R} \), \( f(x) = \log_e\left(x + \frac{1}{2}\right) - \log_e\left(\frac{1}{2} - x\right) \).

Part of the graph of \( y = f(x) \) is shown below.

Graph of f(x)

a. State the range of \( f(x) \). 1 mark

b. i. Find \( f'(0) \). 2 marks

ii. State the maximal domain over which \( f \) is strictly increasing. 1 mark

c. Show that \( f(x) + f(-x) = 0 \). 1 mark

d. Find the domain and the rule of \( f^{-1} \), the inverse of \( f \). 3 marks

Let \( h \) be the function \( h : \left( -\frac{1}{2}, \frac{1}{2} \right) \rightarrow \mathbb{R} \), \( h(x) = \frac{1}{k} \left( \log_e\left(x + \frac{1}{2}\right) - \log_e\left(\frac{1}{2} - x\right) \right) \), where \( k \in \mathbb{R} \) and \( k > 0 \).

The inverse function of \( h \) is defined by \( h^{-1} : \mathbb{R} \rightarrow \mathbb{R} \), \( h^{-1}(x) = \frac{e^{kx} - 1}{2(e^{kx} + 1)} \).

The area of the regions bound by the functions \( h \) and \( h^{-1} \) can be expressed as a function, \( A(k) \). The graph below shows the relevant area shaded.

Area between h and inverse

e. i. Determine the range of values of \( k \) such that \( A(k) > 0 \). 1 mark

Question 5 [2022 Exam 2 Section B Q5]

Let \( g(x) = f(\sin(2x)) \), where the function \( f \) is differentiable.

The following table gives values for \( f(x) \) and \( f'(x) \):

\( x \) \( \frac{1}{2} \) \( \frac{\sqrt{2}}{2} \) \( \frac{\sqrt{3}}{2} \)
\( f(x) \) \( -2 \) \( 5 \) \( 3 \)
\( f'(x) \) \( 7 \) \( 0 \) \( \frac{1}{9} \)

a. Find the value of \( g\left( \frac{\pi}{6} \right) \). 1 mark

The derivative of \( g \) with respect to \( x \) is given by \( g'(x) = 2 \cdot \cos(2x) \cdot f'(\sin(2x)) \).

b. Show that \( g'\left( \frac{\pi}{6} \right) = \frac{1}{9} \). 1 mark

c. Find the equation of the tangent to \( g \) at \( x = \frac{\pi}{6} \). 2 marks

d. Find the average value of the derivative function \( g'(x) \) between \( x = \frac{\pi}{8} \) and \( x = \frac{\pi}{6} \). 2 marks

e. Find four solutions to the equation \( g'(x) = 0 \) for the interval \( x \in [0, \pi] \). 3 marks


End of examination questions

VCE is a registered trademark of the VCAA. The VCAA does not endorse or make any warranties regarding this study resource. Past VCE exams and related content can be accessed directly at www.vcaa.vic.edu.au

>